Fluid permeability of fibrous layers with finite thickness
نویسندگان
چکیده
منابع مشابه
Contractile stresses in cohesive cell layers on finite-thickness substrates.
Using a minimal model of cells or cohesive cell layers as continuum active elastic media, we examine the effect of substrate thickness and stiffness on traction forces exerted by strongly adhering cells. We obtain a simple expression for the length scale controlling the spatial variation of stresses in terms of cell and substrate parameters that describes the crossover between the thin and thic...
متن کاملTransverse permeability of fibrous porous media.
In this study, the transverse permeability of fibrous porous media is studied both experimentally and theoretically. A scale analysis technique is employed for determining the transverse permeability of various fibrous matrices including square, staggered, and hexagonal arrangements of unidirectionally aligned fibers, as well as simple two-directional mats and simple cubic structures. In the pr...
متن کاملTheoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers
In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable solids is presented, and governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed using the principle of virtua...
متن کاملThickness-dependent reversible hydrogenation of graphene layers.
In this work, graphene layers on SiO(2)/Si substrate have been chemically decorated by radio frequency hydrogen plasma. Hydrogen coverage investigation by Raman spectroscopy and micro-X-ray photoelectron spectroscopy characterization demonstrates that the hydrogenation of single layer graphene on SiO(2)/Si substrate is much less feasible than that of bilayer and multilayer graphene. Both the hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biorheology
سال: 2015
ISSN: 1867-0466,1867-0474
DOI: 10.17106/jbr.29.11